¹³C(⁶Li,d) **1978Ar15**

- 1970Be31: The 13 C(6 Li,d) and 13 C(7 Li,t) reactions were studied at the University of Pennsylvania tandem accelerator using 18-MeV 6 Li and 17-MeV 7 Li ion beams bombarding a self-supporting, $60\pm14~\mu g/cm^2$ thick 13 C target. Reaction deuterons and tritons were momentum analyzed in a spectrograph over an angular range θ =3.75°-172.5°. Fifteen energy levels below E_x =8.5-MeV were deduced from the angular distributions. Transitions to negative-parity states at E_x =3.06, 3.85, and 4.55 MeV are the strongest when compared with those from the 12 C(7 Li,t) and 12 C(6 Li,d) reactions leading to the first K=0, 16 O rotational band. Strong transitions were also observed at E_x =7.38, (8.46,8.49), (8.87,8.95), and (9.14,9.20) MeV.
- 1970Go29: Beam of $^6\text{Li}/^7\text{Li}$ from the cyclotron of the Kurchatov Atomic Energy institute at E=25.6 MeV/30.1 MeV impinged on a self-supporting carbon foil (0.4 mg/cm², 75% ^{13}C isotope enriched). The reaction products were detected and identified with a $\Delta E/\Delta X$ -E counter telescope. The energy spectra were analyzed using a multidimensional analyzer. The angular distributions of deutrons were obtained at θ =0°-45°. States at $^{17}\text{O*}(0,0.87,3.06,3.85,4.56,7.56,8.88 \text{ MeV})$ were observed. The group of levels in the energy range E_x =5.0-6.4 MeV were masked by the ^{12}C impurity in the target and not observed. The J^π value of the $^{17}\text{O*}(7.56 \text{ MeV})$ state was determined as $9/2^-$. The hypothesis of the weak binding of the four particles in the sd shell and of several holes in the p shell is confirmed.
- 1978Ar15: E(6 Li)=26, 29, and 34 MeV ion beams bombarded a 0.1-0.35 mg/cm² carbon film (70% 13 C, 30% 12 C) at the Kurchatov Institute of Atomic Energy. Deuterons were measured by a Δ E/ Δ X-E telescope that was placed at θ_{lab} =8° with respect to the beam direction. Alpha particles were detected by 4 surface-barrier detectors (\approx 100 μ thick). A series of excited states of 17 O with large reduced α -particle widths was found.
- 1978Cl08: An ion beam of 6 Li or 7 Li at E=34, 36 MeV, produced at the Florida State University/FN tandem Van de Graaff accelerator, impinged on 100 μ g/cm² thick 13 C targets (enriched 99%). A Δ E-E telescope was used to detect particles with a subtended angle θ =0.2° with resolution 85 keV for tritons and 75 keV for deuterons. Angular distributions were measured at θ =5.0°-31.5°. Strongly populated excited levels of 17 O*(13.58 2: suggested J $^{\pi}$ =11/2 $^{-}$ or 13/2 $^{-}$ or both,14.86,18.17,19.24 MeV) were observed.
- 1982Ta23: 13 C(6 Li,d), E=36,32,28 MeV; measured yield vs particle energy, $\sigma(\theta)$, fusion σ , breakup σ vs E; deduced reaction mechanism. Optical, simple breakup model analyses.
- 1984Ca39: The 13 C(6 Li,d) 17 O* $\rightarrow \alpha + ^{13}$ C reaction was studied at the FN9 tandem Van de Graaff/the Centre d'Etudes Nucleaires de Saclay with an incident energy of E(6 Li)=34 MeV and a self-supporting, 157 μ g/cm² thick 13 C target. Deuterons were detected by a DE-E Si telescope placed at θ_{lab} =10° and the coincident α -particles were recorded by two DE-E Si telescopes covering the angular range 20°< θ_{lab} <157.5°. The excitation energies of 17 O*(8.47, 8.92, 9.87, 13.6, 14.25, 14.95, 16.1, 18.3 and 19.6 MeV) were recognized.
- 1998Mu12: 13 C(6 Li,X), E(cm)=2.07-8.23 MeV; measured E γ , I γ ; deduced partial, total fusion σ . Statistical model analysis, Optical model, Incoming Wave Boundary Condition model and one-dimensional Barrier Penetration model calculations.
- 2003Ka51,2003Ku03,2003Ku36: 13 C(6 Li,d), E=60 MeV; measured deuteron spectra, σ (E, θ); deduced spectroscopic factors, subthreshold state contribution, optical potential parameters.
- 2012La29: XUNDL dataset compiled by TUNL, 2012.
- A beam of E=7.82 MeV 6 Li ions impinged on a 53 μ g/cm² 99% enriched 13 C target at the Florida State University accelerator facility. An array of five 5 cm×1 cm position sensitive Si detectors measured 16 O and deuterons from the reaction.
- Three broad groups, corresponding to $^{17}\text{O*}(6356)$, $^{17}\text{O*}(7165,7248)$ and $^{17}\text{O*}(7378,7381)$ are populated in the reaction. Data are analyzed via an R-matrix analysis; the parameters of the higher-lying states are adjusted to reproduce values given in 2008He11. The Asymptotic Normalization Constant, ANC= $6.7^{+0.9}_{-0.6}$ fm⁻¹ is deduced for the 6356 keV J^{π}=1/2⁺ state. Discussion on the astrophysical reaction rate and impact of the E_x=6356 keV (α ,n) subthreshold resonance is given.

Theory:

2003Ke10: 13 C(6 Li,d), E=60 MeV; analyzed σ (E, θ). 17 O deduced spectroscopic factors. DWBA and coupled reaction channels analysis, comparison with previous results, astrophysical implications discussed. See also (2018Ke03).

¹⁷O Levels

E(level) [†]	Jπ‡	<u>L</u> ‡	Comments
0		3 #	
871		1#	
3055	$(1/2^{-})$	0	L: See also (1970Go29,2003Ka51,2003Ku03).
3843	$(5/2^{-})$	2	L: See also (1970Go29,2003Ka51,2003Ku03).

¹³C(⁶Li,d) **1978Ar15** (continued)

¹⁷O Levels (continued)

E(level) [†]	J^{π} ‡	Γ^{\ddagger}	L [‡]	Comments
4554 5085 5216	(3/2 ⁻)		2	L: See also (1970Go29,2003Ka51,2003Ku03).
5697 5733 5869 5939				Unresolved (1970Be31,2003Ka51,2003Ku03,2003Ku36). Unresolved (1970Be31,2003Ka51,2003Ku03,2003Ku36). Unresolved (1970Be31). Unresolved (1970Be31).
6356		83 keV +9-12	1@	$\Gamma \approx 83 \text{ keV } +9-12, \ \Gamma \approx \Gamma_n \ (2012\text{La}29).$ $ANC^2 = 6.7 \text{ fm}^{-1} +9-6 \ (2012\text{La}29).$ The results of $(2003\text{Ka}51,2003\text{Ku}03,2003\text{Ku}36)$ indicate $S_{\alpha}(6.356)/S_{\alpha}(3.055) = 0.044.$ See also $S_{\alpha} = 0.36-0.40$ for N=4 $(2003\text{Ke}10)$: calculated values in Table 3).
6862 6972				
7165 ^{&}	5/2 ^{-&}	1.88 & keV		Γ_n =1.88 keV Unresolved (2003Ka51,2003Ku03,2003Ku36).
7248 <mark>&</mark>	3/2+&	340 & keV		$\Gamma_{\rm n}$ =340.1 keV; $\Gamma \alpha$ =0.14 keV Unresolved (2003Ka51,2003Ku03,2003Ku36).
7378 <mark>&</mark>	5/2+&	0.42 ^{&} keV		$\Gamma_{\rm n}$ =0.41 keV; $\Gamma \alpha$ =0.011 keV
7381 &	5/2-&	1.77 & keV	(4)	$\Gamma_{\rm n}$ =1.77 keV J^{π} : See also (9/2 ⁻)? (1978Ar15).
7559	A		· a	
7576 7688 7757 8200	9/2 ^{-a}		4 ^a	Unresolved (1970Be31,1978Cl08). Unresolved (1970Be31,1978Cl08).
8466 8501 8687	7/2+	7 keV <i>3</i>	3	Unresolved (1970Be31,1978Cl08). Unresolved (1970Be31,1978Cl08).
8885 8897 8967 9150	7/2-	6 keV	4 4 ^a	Unresolved (1970Be31). Unresolved (1970Be31,1978Cl08). Unresolved (1970Be31,1978Cl08). Unresolved (1970Be31).
9180 9187	7/2-	3 keV	4	Unresolved (1970Be31).
9976	7/2+	107 keV	3	
10168 11815 12400 13300?	5/2+	138 keV	3	
13.58×10 ³ <i>b</i> 2	$(11/2^-, 13/2^-)^{ab}$	200 keV	6	Γ: From (1978Ar15). E(level): See also 13.6 MeV <i>I</i> (1978Ar15). J ^π : 13/2 ⁻ is preferred in (1978Ar15) based on expected systematics.
14.15×10 ^{3‡} 10 14760	(9/2+,11/2+)	200 keV	5	J^{π} : (11/2 ⁺) is slightly preferred in (1978Ar15).
15.1×10 ^{3‡} <i>I</i>	(9/2+,11/2+)	0.38 MeV <i>15</i>	5	E(level): 15.0 MeV I at E(6 Li)=26 MeV, 15.15 MeV I 5 at E(6 Li)=29 MeV. Γ : 0.37 MeV I 5 at E(6 Li)=26 MeV, 0.40 MeV I 5 at E(6 Li)=29 MeV.
1505 103+ 1-	(0.10± 1.1.10±)	40 402	_	J^{π} : 11/2 ⁺ is preferred in (1978Ar15).
$15.95 \times 10^{3 \ddagger} 15$	$(9/2^+,11/2^+)$	$4.0 \times 10^2 \text{ keV } 15$	5	J^{π} : 9/2+ is preferred in (1978Ar15).
16.60×10 ^{3‡} 15	(11/2 ⁻ ,13/2 ⁻)		6	J^{π} : 11/2 ⁻ is preferred in (1978Ar15).

Continued on next page (footnotes at end of table)

¹³C(⁶Li,d) **1978Ar15** (continued)

¹⁷O Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	Γ^{\ddagger}	L‡	Comments
17.10×10 ^{3‡} 15	$(11/2^-, 13/2^-)$		6	J^{π} : 11/2 ⁻ is preferred in (1978Ar15).
19.60×10 ^{3‡} 15	$(13/2^+, 15/2^+)$	250 keV	7	J^{π} : 15/2 ⁺ is preferred in (1978Ar15).
20.20×10^{3} 15	$(13/2^+, 15/2^+)$	250 keV	7	J^{π} : 15/2 ⁺ is preferred in (1978Ar15).
21.2×10^{3} ‡	$(13/2^+, 15/2^+)$		7	J^{π} : 13/2 ⁺ is preferred in (1978Ar15).
22.1×10^{3} ‡				

[†] Observed in (1970Be31, 1970Go29, 1978Ar15, 1978Cl08, 1984Ca39, 2003Ka51, 2003Ku03, 2003Ku36). See nominal level energy values listed in, for example, (1978Cl08).

 $\gamma(^{17}O)$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f
871	871		0
2184	3055	$(1/2^{-})$	871
3843	3843	$(5/2^{-})$	0

 $^{^{\}dagger}$ See (1998Mu12).

[‡] From (1978Ar15) except where noted.

[#] From (1970Go29,2003Ka51,2003Ku03).

[@] From (2003Ka51,2003Ku03).

[&]amp; Populated in (2012La29) using values from (2008He11). Γ_n , $\Gamma\alpha$ are also from (2008He11).

^a From (1970Go29).

^b From (1978Cl08).

¹³C(⁶Li,d) 1978Ar15

Level Scheme

